

Fig. 1. The molecular structure of $\operatorname{lOs}(\mathrm{CO})_{2}\left(\mathrm{C}_{6} \mathrm{H}_{4} \mathrm{NNC}_{6} \mathrm{H}_{5}\right)_{2}$.
nigan, Knox \& Pauson, 1969). Related Os complexes with $\left(\mathrm{CH}_{3} \mathrm{NCHC}_{6} \mathrm{H}_{4}-\right)$ (Choo Yin \& Deeming, 1977) and benzo[$h] q$ uinoline (Bruce, Goodall \& Stone, 1973) as the ligands have also been prepared from $\mathrm{Os}_{3}(\mathrm{CO})_{12}$.

Two coordinated azobenzenido ligands have also been observed in the structure of bis(azobenzenido)rhodium acetate (Craik, Knox, Pauson, Hoare \& Mills, 1971). However, in the Rh complex the two orthometallated C bonds are cis to each other while the $\mathrm{Rh}-\mathrm{N}$ bonds are trans. In the title compound the Os atom displays a slightly distorted octahedral coordination geometry, with the largest deviation caused by the bite requirement of the azobenzenido ligand, but the two $\mathrm{Os}-\mathrm{N}$ bonds are cis to each other as are the two $\mathrm{Os}-\mathrm{C}$ bonds of the chelating ligand. The two carbonyl ligands are also cis to each other. The Os-C(carbonyl) bond trans to the coordinated N atom is significantly shorter than the $\mathrm{Os}-\mathrm{C}$ bond trans to the ortho-
metallated C atom. This suggests that the azobenzenido C atom is involved in π-bonding to the metal with competition between the two trans C atoms for the π-electron density on the Os, giving rise to the longer $\mathrm{Os}-\mathrm{C}$ bond. Both $\mathrm{Os}-\mathrm{N}$ bonds are longer than the terminal $\mathrm{Os}-\mathrm{N}$ distance of 1.94 (3) \AA in $\left[\mathrm{HOs}_{5}(\mathrm{CO})_{13}\left(\mathrm{C}_{6} \mathrm{H}_{5} \mathrm{NC}_{6} \mathrm{H}_{4} \mathrm{~N}\right)\right.$] (Dawoodi, Mays \& Raithby, 1980) where π-donation is considered to be present.
The $\mathrm{N}-\mathrm{N}$ lengths in the title compound are similar to the value in $\left[\mathrm{Rh}\left(\mathrm{O}_{2} \mathrm{CCH}_{3}\right)\left(\mathrm{C}_{6} \mathrm{H}_{5} \mathrm{NNC}_{6} \mathrm{H}_{4}\right)_{2}\right]$ (Craik, Knox, Pauson, Hoare \& Mills, 1971), and indicate the presence of considerable multiple $\mathrm{N}-\mathrm{N}$ bonding. The geometry of the remainder of the ligand corresponds closely to the expected values.

We thank the Science Research Council for financial support. Calculations were performed on the University of Cambridge IBM 370/165 computer with SHELX 76 (Sheldrick, 1976); the figure was drawn with PLUTO written by Dr W. D. S. Motherwell.

References

Bagga, M. M., Flannigan, W. T., Knox, G. R. \& Pauson, P. L. (1969). J. Chem. Soc. C, pp. 1534-1537.

Bruce, M. I., Goodall, B. L. \& Stone, F. G. A. (1973). J. Organomet. Chem. 60, 343-349.
Choo Yin, C. \& Deeming, A. J. (1977). J. Organomet. Chem. 133, 123-138.
Craik, A. R. M., Knox, G. R., Pauson, P. L., Hoare, R. J. \& Mills, O. S. (1971). J. Chem. Soc. Chem. Commun. pp. 168-169.
Dawoodi, Z., Mays, M. J. \& Raithby, P. R. (1980). J. Chem. Soc. Chem. Commun. pp. 712-714.
International Tables for X-ray Cry'stallography (1974). Vol. IV. Birmingham: Kynoch Press.

Sheldrick, G. M. (1976). SHELX 76. Program for crystal structure determination. Univ. of Cambridge, England.

Structure of the Flavone-3-monophosphate-Magnesium Complex

By R. Bergstrom, K. Satyshur and M. Sundaralingam
Department of Biochemistry, College of Agricultural and Life Sciences, University of Wisconsin, Madison, Wisconsin 53706, USA

(Received 30 June 1980; accepted 22 September 1980)

Abstract

C}_{15} \mathrm{H}_{9} \mathrm{O}_{6} \mathrm{P}^{2-} . \mathrm{Mg}^{2+} .5 \mathrm{H}_{2} \mathrm{O}\), monoclinic, $\mathrm{C} 2 / \mathrm{c}$, $a=40.877$ (3), $b=6.296$ (1), $c=14 \cdot 139$ (1) $\AA, \beta=$ $101.72(1)^{\circ}, Z=8, D_{m}=1.60, D_{c}=1.604 \mathrm{Mg} \mathrm{m}^{-3}$ ($T=295 \mathrm{~K}$). The structure was solved by direct methods and refined by the block-diagonal least-

0567-7408/81/010254-05\$01.00
squares method to a final R value of 0.041 for 2721 reflections measured on a diffractometer. The crystal consists of hydrophobic layers, containing the aromatic portions of the flavone molecule, separated by hydrophilic layers which contain the phosphate group, the
keto O , the Mg^{2+} ion and the water molecules. Coordination of Mg^{2+} by the keto $\mathrm{O}(4)$ and the phosphate $\mathrm{O}(1 \mathrm{P})$ results in a seven-membered chelate ring. The $\mathrm{P}-\mathrm{O}(3)$ ester bond is unusually long, 1.661 (2) Å.

Introduction. Flavone-3-monophosphate and flavone-3-diphosphate were synthesized for use as an ultrasensitive assay for alkaline phosphatase (Land \& Jackim, 1966). Our interest in the structure of the flavone phosphates arose both because of their ability to serve as substrates for the alkaline and acid phosphatases, and, more importantly, because of their ability to form complexes with divalent cations. In particular, we obtained the magnesium-flavone complex, a useful model for the chelation of Mg^{2+} ions by organic phosphates, important in the biochemistry of nucleotides and coenzymes, and rarely obtained in the crystalline state.

Flavone-3-diphosphate triammonium salt was purchased from the Chemical Dynamics Corporation, New Jersey, USA. Our X-ray investigation revealed that we received instead flavone-3-monophosphate. This was confirmed by NMR spectroscopy of the uncomplexed molecule in solution, which showed a peak for the organic monophosphate and a second peak for orthophosphate. Bright-yellow crystals were obtained by slow diffusion of the flavone into a MgCl_{2} solution. Crystals were also obtained with HgCl_{2}, $\mathrm{CdCl}_{2}, \mathrm{BaCl}_{2}, \mathrm{PbCl}_{2}, \mathrm{ZnCl}_{2}$ and CuCl_{2} in place of the MgCl_{2}.

A rectangular crystal of dimensions $0.4 \times 0.2 \times$ 0.05 mm was selected for analysis. Preliminary Weissenberg photographs showed the systematic absences: $h k l: h+k=2 n+1, h 0 l: l=2 n+1(h=2 n+$ $1)$, and $0 k 0: k=2 n+1$. The space group was, therefore, $C c$ or $C 2 / c$. Density was measured by flotation in a $\mathrm{CHCl}_{3}-\mathrm{CHBr}_{3}$ solution, and is reported with other crystal parameters in the Abstract. The crystal was mounted on a Picker FACS-1 X-ray diffractometer with the b axis coincident with the φ axis of the goniostat. Cell constants were determined by a least-squares fit of 24 accurately centered reflections. Intensity data were collected with Ni -filtered Cu radiation $(\lambda=1.5418 \AA)$ by the $\omega-2 \theta$ scan method with a scan rate of $2^{\circ} \mathrm{min}^{-1}$, scan range of 1.6°, and background counts of 10 s at each scan limit. A total of 2880 independent reflections were scanned to a limit of 127° on $2 \theta .2721$ reflections had $I>1 \cdot 5 \sigma(I)$ and were used in the structure analysis after applying the usual Lorentz and polarization corrections. A crystal-decay correction of less than 2%, based on intensity standards collected at intervals of 75 reflections, and an empirical absorption correction based on a φ curve, with minimum and maximum corrections of less than 10%, were applied to the data. The value of $R=\sum \mid F_{i}$ $-F_{\mathrm{av}} \mathrm{l} / \sum F_{\mathrm{av}}$ for 903 pairs of equivalent reflections was
less than 1%. The space group was shown to be $C 2 / c$ from a statistical analysis (Howells, Phillips \& Rogers, 1950) of the normalized intensities.

The structure was solved by direct methods using mULTAN (Main, Woolfson, Lessinger, Germain \& Declercq, 1974). The positions of all non-hydrogen atoms in the structure except the solvent oxygens were revealed in the initial E map. A series of structure factor calculations followed by difference Fourier maps revealed all the other atoms.

The positions of the non-hydrogen atoms, with anisotropic temperature factors, and the H atoms, with isotropic temperature factors, were submitted to several cycles of block-diagonal least-squares refinement, minimizing $\sum w_{i}\left(\left|F_{o}\right|-\left|F_{c}\right|\right)^{2}$, where $w_{i}=1 / \sigma_{i}^{2}$, based on counting statistics (Stout \& Jensen, 1968). The final unweighted value of $R=\sum\left|F_{o}\right|-\left|F_{c}\right| / \sum\left|F_{o}\right|$ for the observed reflections was 0.041 . The R value was 0.043 including unobserved reflections.* The maximum ratio of the shift over estimated standard deviation for the atomic parameters in the final cycle of refinement was less than 0.3 .

Scattering factors for Mg^{2+} were obtained from International Tables for X-ray Crystallography (1974). Those for P, O, and C were from Cromer \& Waber (1965) and for H from Stewart, Davidson \& Simpson (1965).

Discussion. An ORTEP (Johnson, 1965) drawing of the flavone-3-monophosphate-magnesium complex is displayed in Fig. 1. Positional coordinates for the

[^0]

Fig. 1. ORTEP (Johnson, 1965) drawing of the flavone-3-monophosphate $-\mathrm{Mg}^{2+}$ complex, showing the 50% probability surfaces for the non-hydrogen-atom thermal ellipsoids.

Table 1. Positional coordinates and $B_{\text {eq }}$'s for nonhydrogen atoms and positional coordinates and isotropic temperature factors for hydrogen atoms

	x	y	z	$\begin{aligned} & B_{\mathrm{eq}} / B \\ & \left(\AA^{2}\right)^{*} \end{aligned}$
P	$0 \cdot 32229$ (1)	0.0648 (1)	-0.0750 (0)	1.47 (2)
Mg	0.30771 (2)	0.3101 (1)	0.1170 (1)	$0 \cdot 88$ (3)
$\mathrm{O}(1)$	0.43974 (4)	0.3088 (3)	0.0056 (1)	$2 \cdot 23$ (5)
$\mathrm{O}(3)$	0.36009 (4)	0.0473 (2)	-0.0050 (1)	1.92 (5)
$\mathrm{O}(4)$	0.35393 (4)	0.4154 (3)	0.0985 (1)	$2 \cdot 38$ (5)
$\mathrm{O}(1 \mathrm{P})$	$0 \cdot 30062$ (4)	0.1834 (3)	-0.0177 (1)	$2 \cdot 16$ (4)
O(2P)	$0 \cdot 31299$ (4)	-0.1678 (3)	-0.0879 (1)	$2 \cdot 14$ (4)
$\mathrm{O}(3 \mathrm{P})$	0.32641 (4)	0.1759 (3)	-0.1656 (1)	$2 \cdot 67$ (6)
$\mathrm{O}(W 1)$	0.25948 (4)	0.2229 (3)	0.1319 (1)	$2 \cdot 20$ (5)
$\mathrm{O}(W 2)$	0.31972 (4)	0.4220 (3)	0.2582 (1)	$2 \cdot 53$ (4)
$\mathrm{O}(W 3)$	0.29128 (4)	0.6049 (3)	0.0651 (1)	2.99 (5)
$\mathrm{O}(W 4)$	0.32677 (4)	0.0212 (3)	0.1730 (1)	$2 \cdot 60$ (5)
$\mathrm{O}(W 5)$	0.25013 (4)	0.7988 (3)	0.1664 (1)	$2 \cdot 68$ (5)
C (2)	0.41324 (6)	$0 \cdot 1703$ (4)	-0.0213 (2)	1.83 (7)
C(3)	0.38409 (5)	0.2010 (4)	0.0084 (2)	1.71 (7)
$\mathrm{C}(4)$	0.37945 (6)	0.3853 (4)	0.0666 (2)	1.77 (7)
C(5)	0.40574 (6)	0.7152 (4)	$0 \cdot 1442$ (2)	$2 \cdot 21$ (7)
C(6)	0.43359 (6)	0.8418 (4)	0.1705 (2)	2.55 (8)
C(7)	0.46379 (6)	0.7841 (4)	0.1441 (2)	$2 \cdot 64$ (8)
C(8)	0.46559 (6)	0.6058 (4)	0.0891 (2)	$2 \cdot 28$ (8)
C (9)	0.43702 (6)	0.4821 (4)	0.0613 (2)	1.94 (7)
$\mathrm{C}(10)$	0.40741 (6)	0.5310 (4)	0.0890 (2)	1.84 (7)
C(11)	0.42326 (6)	-0.0071 (4)	-0.0782 (2)	1.91 (6)
C(12)	0.40072 (6)	-0.1604 (4)	-0.1239 (2)	$2 \cdot 56$ (8)
C(13)	0.41155 (6)	-0.3251 (5)	-0.1738 (2)	$2 \cdot 92$ (9)
C(14)	0.44480 (6)	-0.3461 (4)	-0.1786 (2)	2.60 (8)
C(15)	0.46734 (6)	-0.1943 (4)	-0.1350 (2)	2.51 (8)
C(16)	0.45684 (6)	-0.0257 (4)	-0.0853 (2)	$2 \cdot 22$ (8)
$\mathrm{HI}(\mathrm{OW} 1)$	0.2402 (6)	0.261 (5)	0.089 (2)	$6 \cdot 1$ (9)
$\mathrm{H} 2(\mathrm{OW} 1)$	0.2575 (6)	$0 \cdot 102$ (5)	$0 \cdot 140$ (2)	$5 \cdot 3$ (8)
$\mathrm{HI}(\mathrm{OW} 2)$	0.3186 (6)	0.342 (5)	0.302 (2)	$6 \cdot 2$ (8)
$\mathrm{H} 2(\mathrm{OW} 2)$	0.3212 (7)	0.514 (5)	0.281 (2)	$6 \cdot 3$ (9)
$\mathrm{HI}(\mathrm{OW} 3)$	0.2989 (6)	0.671 (4)	0.031 (2)	4.0 (7)
$\mathrm{H} 2(\mathrm{OW} 3)$	$0 \cdot 2822$ (7)	0.689 (5)	0.090 (2)	6.7 (9)
$\mathrm{HI}(\mathrm{OW} 4)$	0.3254 (9)	-0.045 (5)	0.221 (2)	10.1 (11)
$\mathrm{H} 2(\mathrm{OW} 4)$	0.3267 (7)	-0.089 (5)	0.139 (2)	$8 \cdot 3$ (10)
$\mathrm{Hl}(\mathrm{OW} 5)$	$0 \cdot 2553$ (5)	0.799 (4)	0.211 (1)	$2 \cdot 5$ (6)
H2(OW5)	0.2287 (8)	0.765 (6)	0.144 (3)	10.2 (12)
$\mathrm{H}(\mathrm{C} 5)$	0.3849 (5)	0.749 (3)	0.163 (2)	1.8 (5)
H(C6)	0.4331 (6)	0.969 (5)	0.199 (2)	$5 \cdot 1$ (8)
H (C7)	0.4867 (6)	0.887 (4)	$0 \cdot 165$ (2)	$4 \cdot 0$ (7)
H(C8)	0.4883 (5)	0.564 (3)	0.075 (1)	$1 \cdot 1$ (5)
$\mathrm{H}(\mathrm{Cl} 2)$	0.3782 (6)	-0.147 (4)	-0.129 (2)	$2 \cdot 8$ (6)
$\mathrm{H}(\mathrm{Cl} 3)$	0.3969 (6)	-0.417 (4)	-0.211 (2)	5.0 (8)
$\mathrm{H}(\mathrm{C} 14)$	0.4552 (6)	-0.475 (5)	-0.218 (2)	$5 \cdot 5$ (8)
H(C15)	0.4928 (5)	-0.195 (3)	-0.142 (1)	1.7 (5)
H(C16)	0.4742 (6)	0.085 (4)	-0.052 (2)	3.4 (6)

atoms are given in Table 1, bond lengths and bond angles in Table 2.

The $\mathrm{P}-\mathrm{O}(3)$ ester bond is unusually long, 1.661 (2) \AA, compared with the average $\mathrm{P}-\mathrm{O}$ ester bond length of $1.605 \AA$ (Sundaralingam, 1973) in nucleoside mono- and diphosphates.

A $\mathrm{P}-\mathrm{O}$ bond length of $1.621(5) \AA$ has been observed in disodium DL- α-glycerophosphate hexahydrate (McAlister \& Sundaralingam, 1980), and phosphate $\mathrm{P}-\mathrm{O}$ ester bonds to substituted aromatic rings have been found to be as long as $1.64(2) \AA$ (Caughlan \& Mazhar-ul-Haque, 1967). The long $\mathrm{P}-\mathrm{O}$ bond in the present structure may be related to the

Table 2. Bond lengths (\AA) and bond angles $\left({ }^{\circ}\right)$ for the flavone-3-monophosphate-magnesium complex

$\mathrm{Mg}-\mathrm{O}(W 1)$	$2.098(2)$	$\mathrm{C}(11)-\mathrm{C}(12)$	$1.399(4)$
$\mathrm{Mg}-\mathrm{O}(W 2)$	$2.080(2)$	$\mathrm{C}(11)-\mathrm{C}(16)$	$1.401(4)$
$\mathrm{Mg}-\mathrm{O}(W 3)$	$2.058(2)$	$\mathrm{C}(12)-\mathrm{C}(13)$	$1.377(4)$
$\mathrm{Mg}-\mathrm{O}(W 4)$	$2.072(2)$	$\mathrm{C}(13)-\mathrm{C}(14)$	$1.381(4)$
$\mathrm{Mg}-\mathrm{O}(1 \mathrm{P})$	$2.031(2)$	$\mathrm{C}(14)-\mathrm{C}(15)$	$1.383(4)$
$\mathrm{Mg}-\mathrm{O}(4)$	$2.068(2)$	$\mathrm{C}(15)-\mathrm{C}(16)$	$1.388(4)$
$\mathrm{P}-\mathrm{O}(1 \mathrm{P})$	$1.513(2)$	$\mathrm{C}(2)-\mathrm{C}(11)$	$1.482(4)$
$\mathrm{P}-\mathrm{O}(2 \mathrm{P})$	$1.515(2)$	$\mathrm{C}(2)-\mathrm{C}(3)$	$1.355(3)$
$\mathrm{P}-\mathrm{O}(3 \mathrm{P})$	$1.499(2)$	$\mathrm{C}(3)-\mathrm{C}(4)$	$1.457(4)$
$\mathrm{P}-\mathrm{O}(3)$	$1.661(2)$	$\mathrm{C}(4)-\mathrm{C}(10)$	$1.449(4)$
$\mathrm{O}(1)-\mathrm{C}(9)$	$1.363(3)$	$\mathrm{C}(5)-\mathrm{C}(6)$	$1.378(4)$
$\mathrm{O}(1)-\mathrm{C}(2)$	$1.382(3)$	$\mathrm{C}(5)-\mathrm{C}(10)$	$1.407(4)$
$\mathrm{O}(3)-\mathrm{C}(3)$	$1.364(3)$	$\mathrm{C}(6)-\mathrm{C}(7)$	$1.408(4)$
$\mathrm{O}(4)-\mathrm{C}(4)$	$1.232(3)$	$\mathrm{C}(7)-\mathrm{C}(8)-\mathrm{C}(9)$	$1.376(4)$
		$\mathrm{C}(9)-\mathrm{C}(10)$	$1.392(4)$

$\mathrm{O}(W 1)-\mathrm{Mg}-\mathrm{O}(W 2)$	$92 \cdot 1$ (1)	$\mathrm{O}(1)-\mathrm{C}(2)-\mathrm{C}(3)$	120.9 (3)
$\mathrm{O}(W 1)-\mathrm{Mg}-\mathrm{O}(W 3)$	91.5 (1)	$\mathrm{O}(1)-\mathrm{C}(2)-\mathrm{C}(11)$	109.7 (3)
$\mathrm{O}(W 1)-\mathrm{Mg}-\mathrm{O}(W 4)$	$91 \cdot 1$ (1)	$\mathrm{C}(3)-\mathrm{C}(2)-\mathrm{C}(11)$	129.3 (3)
$\mathrm{O}\left(W_{1}\right)-\mathrm{Mg}-\mathrm{O}(1 \mathrm{P})$	91.9 (1)	$\mathrm{O}(3)-\mathrm{C}(3)-\mathrm{C}(2)$	120.6 (3)
$\mathrm{O}(W 2)-\mathrm{Mg}-\mathrm{O}(W 3)$	91.9 (1)	$\mathrm{O}(3)-\mathrm{C}(3)-\mathrm{C}(4)$	118.1 (2)
$\mathrm{O}(W 2)-\mathrm{Mg}-\mathrm{O}(W 4)$	$86 \cdot 2$ (1)	$\mathrm{C}(2)-\mathrm{C}(3)-\mathrm{C}(4)$	120.8 (3)
$\mathrm{O}(W 2)-\mathrm{Mg}-\mathrm{O}(4)$	88.2 (1)	$\mathrm{O}(4)-\mathrm{C}(4)-\mathrm{C}(3)$	123.1 (3)
$\mathrm{O}(W 3)-\mathrm{Mg}-\mathrm{O}(1 \mathrm{P})$	92.7 (1)	$\mathrm{O}(4)-\mathrm{C}(4)-\mathrm{C}(10)$	120.7 (3)
$\mathrm{O}(W 3)-\mathrm{Mg}-\mathrm{O}(4)$	84.6 (1)	$\mathrm{C}(3)-\mathrm{C}(4)-\mathrm{C}(10)$	116.1 (3)
$\mathrm{O}(W 4)-\mathrm{Mg}-\mathrm{O}(1 \mathrm{P})$	89.1 (1)	$\mathrm{C}(6)-\mathrm{C}(5)-\mathrm{C}(10)$	119.8 (3)
$\mathrm{O}(W 4)-\mathrm{Mg}-\mathrm{O}(4)$	92.7 (1)	$\mathrm{C}(5)-\mathrm{C}(6)-\mathrm{C}(7)$	120.0 (3)
$\mathrm{O}(1 \mathrm{P})-\mathrm{Mg}-\mathrm{O}(4)$	88.1 (1)	$\mathrm{C}(6)-\mathrm{C}(7)-\mathrm{C}(8)$	120.7 (3)
		$\mathrm{C}(7)-\mathrm{C}(8)-\mathrm{C}(9)$	118.6 (3)
$\mathrm{O}(1 \mathrm{P})-\mathrm{P}-\mathrm{O}(2 \mathrm{P})$	112.5 (1)	$\mathrm{O}(1)-\mathrm{C}(9)-\mathrm{C}(8)$	116.7 (3)
$\mathrm{O}(1 \mathrm{P})-\mathrm{P}-\mathrm{O}(3 \mathrm{P})$	114.0 (1)	$\mathrm{O}(1)-\mathrm{C}(9)-\mathrm{C}(10)$	121.4 (3)
$\mathrm{O}(1 \mathrm{P})-\mathrm{P}-\mathrm{O}(3)$	106.8 (1)	$\mathrm{C}(8)-\mathrm{C}(9)-\mathrm{C}(10)$	121.9 (3)
$\mathrm{O}(2 \mathrm{P})-\mathrm{P}-\mathrm{O}(3 \mathrm{P})$	114.7 (1)	$\mathrm{C}(4)-\mathrm{C}(10)-\mathrm{C}(5)$	121.2 (3)
$\mathrm{O}(2 \mathrm{P})-\mathrm{P}-\mathrm{O}(3)$	100.8 (1)	$\mathrm{C}(4)-\mathrm{C}(10)-\mathrm{C}(9)$	119.6 (3)
$\mathrm{O}(3 \mathrm{P})-\mathrm{P}-\mathrm{O}$ (3)	106.7 (1)	$\mathrm{C}(5)-\mathrm{C}(10)-\mathrm{C}(9)$	119.0 (3)
		$\mathrm{C}(2)-\mathrm{C}(11)-\mathrm{C}(12)$	122.9 (3)
$\mathrm{Mg}-\mathrm{O}(\mathrm{P})-\mathrm{P}$	135.1 (1)	$\mathrm{C}(2)-\mathrm{C}(11)-\mathrm{C}(16)$	119.0 (3)
$\mathrm{C}(2)-\mathrm{O}(1)-\mathrm{C}(9)$	120.9 (2)	$\mathrm{C}(12)-\mathrm{C}(11)-\mathrm{C}(16)$	118.2 (3)
$\mathrm{P}-\mathrm{O}(3)-\mathrm{C}(3)$	126.3 (2)	$\mathrm{C}(11)-\mathrm{C}(12)-\mathrm{C}(13)$	120.4 (3)
$\mathrm{Mg}-\mathrm{O}(4)-\mathrm{C}(4)$	149.3 (2)	$\mathrm{C}(12)-\mathrm{C}(13)-\mathrm{C}(14)$	121.3 (3)
		$\mathrm{C}(13)-\mathrm{C}(14)-\mathrm{C}(15)$	119.0 (3)
		$\mathrm{C}(14)-\mathrm{C}(15)-\mathrm{C}(16)$	120.5 (3)
		$\mathrm{C}(11)-\mathrm{C}(16)-\mathrm{C}(15)$	120.5 (3)

repulsive interaction between the $O(3 \mathrm{P})$ and $\mathrm{C}(3)$ atoms, which are only 3.046 (3) \AA apart, and to the short $\mathrm{O}(1 \mathrm{P})-\mathrm{Mg}$ bond $[2.031$ (2) \AA].

The dihedral angle between the least-squares planes of the phenyl ring and the benzopyran ring is only $7.6(1)^{\circ}$.

Of particular interest is the conformation of the seven-membered ring formed by chelation of the $\mathbf{M g}^{2+}$ ion by $\mathrm{O}(4)$ and $\mathrm{O}(1 \mathrm{P})$. The conformation of this ring and the endocyclic torsion angles are shown in Fig. 2. The atoms of the ring are arranged in two planes, one containing $\mathrm{Mg}, \mathrm{O}(4), \mathrm{C}(4), \mathrm{C}(3)$, and $\mathrm{O}(3)$ [maximum deviation of $0.025(3) \AA$ by $C(3)$, and the other containing $\mathrm{Mg}, \mathrm{O}(1 \mathrm{P}), \mathrm{P}$, and $\mathrm{O}(3)$ [maximum deviation of 0.006 (2) \AA by $\mathrm{O}(1 \mathrm{P})$], with a dihedral angle between them of $128.1(1)^{\circ}$. The six $\mathrm{Mg}-\mathrm{O}$ bond

Table 3. Hydrogen bonds

$D \quad \mathrm{H} \quad A$	Symmetry*	D-H (\AA)	$\mathrm{H} \cdots{ }^{(}$($)^{\text {) }}$	$D \cdots A(\AA)$	$\angle D H A\left({ }^{\circ}\right)$
$\mathrm{O}\left(W_{1}\right)-\mathrm{Hl}(\mathrm{O} W 1) \cdots \mathrm{O}(1 \mathrm{P})$	[7; 0,0,0]	0.92 (3)	1.80 (3)	2.716 (2)	172 (3)
$\mathrm{O}(W 1)-\mathrm{H} 2(\mathrm{O} W 1) \cdots \mathrm{O}(W 5)$	[1; 0, -1,0]	0.78 (3)	1.98 (3)	2.755 (3)	176 (3)
$\mathrm{O}(W 2)-\mathrm{H} 1(\mathrm{O} W 2) \cdots \mathrm{O}(2 \mathrm{P})$	[2; $0,0,0$]	0.81 (3)	1.96 (3)	2.760 (2)	175 (3)
$\mathrm{O}(W 2)-\mathrm{H} 2(\mathrm{O} W 2) \cdots \mathrm{O}(3 \mathrm{P})$	[2; $0,1,0]$	0.66 (3)	2.09 (3)	2.743 (3)	172 (4)
$\mathrm{O}(W 3)-\mathrm{Hl}(\mathrm{O} W 3) \cdots \mathrm{O}(2 \mathrm{P})$	[1; $0,1,0$]	0.75 (3)	$2 \cdot 14$ (3)	$2 \cdot 880$ (2)	169 (3)
$\mathrm{O}(W 3)-\mathrm{H} 2(\mathrm{O} W 3) \cdots \mathrm{O}(W 5)$	[1; $0,0,0$]	0.77 (3)	1.99 (3)	2.711 (2)	157 (3)
$\mathrm{O}(W 4)-\mathrm{Hl}(\mathrm{O} W 4) \cdots \mathrm{O}(3 \mathrm{P})$	[2; 0,0,0]	0.81 (3)	1.80 (3)	$2 \cdot 600$ (2)	174 (3)
$\dagger \mathrm{O}(W 4)-\mathrm{H} 2(\mathrm{O} W 4) \cdots \mathrm{O}(W 3)$	[1; 0,-1,0]	0.84 (3)	2.51 (3)	$3 \cdot 225$ (2)	144 (3)
$\dagger \mathrm{O}(W 5)-\mathrm{Hl}(\mathrm{O} W 5) \cdots \mathrm{O}(W 1)$	[8; 0,0,0]	$0 \cdot 62$ (1)	2.46 (2)	2.995 (2)	145 (2)
$\mathrm{O}(W 5)-\mathrm{H} 2(\mathrm{O} W 5) \cdots \mathrm{O}(2 \mathrm{P})$	[7; 0,0,0]	$0 \cdot 90$ (4)	1.83 (4)	2.721 (2)	172 (4)

* The first number in the square brackets refers to the following positions: (1) $x, y, z ;(2) x,-y, z+\frac{1}{2}$; (7) $\frac{1}{2}-x, \frac{1}{2}-y,-z ;(8) \frac{1}{2}-x, y+\frac{1}{2}$, $\frac{1}{2}-z$. The remaining three numbers refer to translations in the x, y and z directions respectively.
\dagger See text.

Fig. 2. The metal chelate ring showing the endocyclic torsion angles $\left({ }^{\circ}\right)$.
lengths fall in a range from 2.098 (2) to 2.031 (2) \AA, with an average of 2.07 (2) \AA. The $\mathrm{Mg}-\mathrm{O}(4)-\mathrm{C}(4)$ internal angle of $149.3(2)^{\circ}$ is considerably larger than the $\mathrm{Mg}-\mathrm{O}(1 \mathrm{P})-\mathrm{P}$ angle of $135 \cdot 1(1)^{\circ}$.

Since solutions of flavone-3-monophosphate are colorless, some change in the electronic structure may have been generated upon chelation of Mg^{2+} to produce the bright-yellow crystals. It is noteworthy that crystals obtained by substituting BaCl_{2} for MgCl_{2} are colorless.
The aromatic rings form pleated linear arrays in the c direction. They are stacked in the b direction; the shorter contacts between adjacent molecules are $\mathrm{O}(3) \cdots \mathrm{C}(5)=3.272(3), \mathrm{C}(2) \cdots \mathrm{C}(6)=3.377$ (4) and $\mathrm{C}(16) \cdots \mathrm{C}(8)=3 \cdot 352$ (4) \AA. The hydrophilic portions of the metal complex form layers between the stacked aromatic rings as shown in Fig. 3. Of the ten water H atoms available for hydrogen bonding, eight display normal hydrogen-bond distances and angles. The remaining two H atoms, $\mathrm{H} 2(\mathrm{O} W 4)$ and $\mathrm{H} 1(\mathrm{O} W 5)$, appear to be involved in only weak hydrogen bonds as judged by the geometries (Table 3).

We thank Dr Phil Hart, School of Pharmacy, University of Wisconsin, Madison, for the ${ }^{31} \mathrm{P}$ NMR spectrum of flavone-3-monophosphate. This research

Fig. 3. Stereo packing diagram looking down \mathbf{b}, with \mathbf{a} vertical and chorizontal.
was supported by grant GM-17378 from the National Institutes of Health of the United States Public Health Service.

References

Caughlan, C. N. \& Mazhar-ul-Haque (1967). Inorg. Chem. 6, 1998-2002.
Cromer, D. T. \& Waber, J. T. (1965). Acta Cryst. 18, 104-109.
Howells, E. R., Phillips, D. C. \& Rogers, D. (1950). Acta Cryst. 3, 210-214.
International Tables for X-ray Crystallography (1974). Vol. IV, p. 73. Birmingham: Kynoch Press.
Johnson, C. K. (1965). ORTEP. Report ORNL-3794. Oak Ridge National Laboratory, Tennessee.
Land, D. B. \& Jackim, E. (1966). Anal. Biochem. 16, 481-486.
McAlister, J. \& Sundaralingam, M. (1980). Acta Cryst. B36, 1652-1654.

Main, P., Woolfson, M. M., Lessinger, L., Germain, G. \& DeclercQ, J. P. (1974). mULTAN 74. A Computer Program for the Automatic Solution of Crystal Structures from X-ray Diffraction Data. Univs. of York, England, and Louvain, Belgium.
Stewart, R. F., Davidson, E. R. \& Simpson, W. T. (1965). J. Chem. Phys. 42, 3175-3187.

Stout, G. H. \& Jensen, L. H. (1968). X-ray Structure Determination. A Practical Guide, pp. 454-958. New York: Macmillan.
Sundaralingam, M. (1973). Conformation of Biological Molecules and Polymers, Vol. V, edited by E. D. Bergman \& B. Pullman, pp. 417-455. New York: Academic Press.

[^0]: * Lists of structure factors and anisotropic thermal parameters have been deposited with the British Library Lending Division as Supplementary Publication No. SUP 35676 (11 pp.). Copies may be obtain ed through The Executive Secretary, International Union of Crystallography, 5 Abbey Square, Chester CH1 2HU, England.

